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Two classic problems in unsteady boundary layers, the Stewartson and the Lam & 
Crocco problems, are formulated with a unified new semi-similar transformation using 
velocity and static enthalpy as dependent variables. By this formulation, the 
resulting governing equations - singular parabolic in nature - for these two physically 
different problems are shown to closely resemble one another in all essential aspects. 
For both cases, the domain of the streamwise independent variable is mapped onto 
[0, 13 for all t .  The existence of the Reynolds analogy and the exact energy integral 
are given ; their relations are shown to be different from those in the steady boundary 
layers. Uniformly valid solutions are shown to be obtainable, accurately, by a 
standard relaxation method commonly applied to the solution of elliptical partial 
differential equations. Characteristics of the transition from non-similar solutions to 
downstream similar solutions are discussed. 

1. Introduction 
This paper concerns two well-known problems in unsteady boundary-layer flows : 

(a) the unsteady boundary layers on a semi-infinite plate impulsively set into motion; 
and (b) boundary layers which occur behind a, moving normal shock on a sharp- 
leading-edge flat plate. The study of the former was originated by Stewartson (1951) 
and the latter by Lam & Crocco (1959). Both problems have since been subjected 
to extensive investigations [see Cook & Chapman 1972 and the discussions of Telionis 
19811. From the difficulties appearing in these discussions, the problems clearly 
warrant renewed investigation. This paper presents the results of studies aimed at 
surmounting these difficulties. 

Common to both problems is the existence of semi-similar solutions and the fact 
that the governing equations are singular parabolic in nature. Characteristics of this 
class of equations are: (a) in part of the domain of solution the signs of diffusivity 
(in the mathematical sense) are mixed; and (b) two ‘initial’ conditions are specified 
by the two ends of the time-like independent variables. For both problems, one 
‘ initial ’ aondition derives from the fact that at the leading edge the boundary layer 
is of the Blasius type. The other ‘initial’ condition comes from the assumption that 
(for the Stewartson problem) far from the leading edge the boundary layer is of the 
Rayleigh solution for an infinite plate impulsively set into motion. For the problem 
of Lam & Crocco, the other ‘initial’ condition comes from the assumption that 
immediately behind the shock the boundary layer is given by Mirels’ (1955) solution 
for a moving shock on an infinite plate [see Cook & Chapman 19721. 
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Owing to this particular nature of the governing equations, despite their theoretical 
and practical interests, a uniformly valid analytical method of solution is not 
available [see a recent review by Telionis 19811. Finite-difference numerical methods 
have been presented by Dennis (1972) and Williams & Rhyne (1980) for the 
incompressible Stewartson problem and by Piquet (1972) for both problems. In these 
methods, the domain of solution was divided into zones based on the characteristics 
of the mathematical diffusivity. Methods of solution were adjusted from zone to zone. 
As reported by Dennis (1972) and Piquet (1972), artificial damping was required in 
order to stabilize the computation. Discussions on these methods have been given 
by Wang (1983). 

In  the past, with few exceptions (e.g. Piquet 1972), these two problems were treated 
separately with different methods of formulation and solution. The Stewartson 
problem was usually formulated using the velocity or stream function as the 
dependent variable and was solved using a bite-difference method. The problem of 
Lam t Crocco, on the other hand, was formulated using Crocco’s variables and was 
solved by the integral method. 

In this paper, both problems are formulated using a new semi-similar transformation 
with velocity and enthalpy as dependent variables. The transformation maps the 
domain of the streamwise independent variable onto [0, 11 for all time t .  Resulting 
equations for these two problems closely resemble one another in all essential aspects. 

The applicability of this transformation is not limited to ideal gas or particular 
temperature-dependent transport coefficients. By this transformation, the two 
‘initial ’ conditions are by themselves the solutions of the governing equations of 
motion at the respective ‘initial ’ stations. This transformation and details of 
formulation are given in $2. 

For the steady boundary-layer flow on a flat plate with zero pressure gradient and 
constant wall enthalpy, the Reynolds analogy holds, regardless of the value of the 
Prandtl number, P, [Lagerstrom 19641. If P, = 1, Crocco’s energy integral exists and 
the proportional constant in the Reynolds analogy can be explicitly determined in 
terms of boundary-layer edge enthalpy, velocity, and wall enthalpy. For the two 
unsteady boundary-layer flows in this study, it will be shown in $3 that the Reynolds 
analogy does not hold if P, =+ 1. However, for P, = 1, both the exact energy integral 
and the Reynolds analogy exist. 

Wang (1983) showed that the singular parabolic equations of this class can be 
accurately solved by using a successive-overrelaxation method commonly applied to 
the numerical solutions of elliptical partial differential equations (Young 1961). 
Second-order central differencings were applied to both the time-like derivatives and 
the spatial derivatives. The same differencing scheme and relaxation procedures were 
applied uniformly in the entire domain of solution. There was no need to divide the 
domain of solution into zones. No artificial damping was required. The convergence 
of the solution of the fmite-difference equation to that of the differential equation 
was shown. In this paper, application of this method to the problem of Lam & Crocco 
will be given. Formulation of the difference equation from the differential equation 
and the relaxation procedures are explained in $4. 

Numerical results and discussions are given in $5. Emphasis is placed on the 
characteristics of the transitions from non-similar solutions to downstream-similar 
solutions. Comparisons of the numerical solution for the energy equation with the 
exact integral are made to show the convergence and accuracy of the numerical 
method. The agreements are excellent. Comparisons of the present solution with the 
calculation and experiments of Felderman (1968) are also given. 
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2. Formulation 
2.1. Semi-similar equations for boundary layers behind a nurving normal 

shock on a sharp-leading-edge Jlat plate 
A normal shock moves with constant speed Us on a sharp-leading-edge flat plate. The 
gas in front of the shock is stationary with density pm, pressure p a ,  and temperature 
T,. Behind the shock and away from the wall, the gas will acquire a velocity 

ue = U,(l-?), 

where pe is the density behind the shock. For a perfect gas 

where y is the ratio of specific heats, M ,  = Us/(~RT,):, and R is the gas constant. 

and near the wall is governed by: 

continuitv eauation : 

Within the boundary-layer approximation, the state of the gas behind the shock 

momentum equation : 

energv eauation : 
V Y  

thermal equation of state : 

calorical equation of state : 

viscosity law : 

p = F@, T); 

dh = cp(T) dT; 

p = /L(T); 

where x and y are Cartesian coordinates, with the origin located at  the leading edge 
(parallel and perpendicular, respectively, to the wall), see figure l ( a ) ;  u and v are 
velocity components in the x and y directions, respectively; p is the density; p = p ,  
is the pressure behind the shock; h is the specific enthalpy; cp, a known function of 
temperature T, is the specific heat at constant pressure; p, a known function of T, 
is the viscosity; and P, is the Prandtl number. 

The domain of the solution of interest in x is 0 < x < U,t .  
The boundary conditions are 

lim u(x, y ,  t )  = U,, 0 < x < Ust ,  
!i+m 

lim h(z,  y ,  t )  = he, 0 < x < Ust ,  
!i+a 

where he is given by Rankin-Hugoniot relations. On the plate 

u(x ,  0 ,  t )  = v ( 2 , 0 ,  t )  = 0, 
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FIGURE 1. Coordinate systems for unsteady boundary layers (a) behind a moving normal shock, 
(b) on a semi-infinite plate impulsively set into motion. 

and 

for the case of the constant-temperature wall, or 

h(x, 0, t )  = h,(x, 0, t )  = const, 

for the case of the adiabatic wall. 
Define the stream function $(x, y, t )  by 

where = I" dy. 
o Pe 

where ve = pe/pe ; 

5 = 1 --Kexp ( -  U , t / z )  

where in (K) = 1,  and 

The continuity equation is automatically satisfied. The momentum equation can be 
written as 



where 
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Defining 

the energy equation becomes 

a = Us/Ue.  

8 = h/he, 

The boundary conditions are 
- 

ll+a: u = e = i ,  

v = o :  u = f = O ,  
- 

and (a) constant temperature wall, 
h w  

q = o  he 
el =-, 

or (b) adiabatic wall, 

The ‘initial’ conditions, one for t = 0 and the other for x = 0, are replaced by the 

At x = 0, which corresponds to 6 = 1,  the solution is of the Blasius type. At f = 1 ,  
conditions at  f = 0 and 6 = 1, respectively. 

(18) and (24) are reduced, respectively, to 

and 

where 

and + = (ue ve xYf(71). ( 1 5 4  

Indeed, this set of equations represents the compressible boundary layer of the 
Blasius type [see equations (3.1.10)-(3.1.14) of Stewartson (1964)l. 

The 6 = 0 corresponds to x = Ust,  where the similarity solution also exists 
(Schlichting 1968). At  f = 0, (18) and (24) are reduced, respectively, to 

and 
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To identify (18b) and (24b) with (15.96) and (15.97) of Schlichting (1968), one 
should replace q and f in (18b) and (24b) with ( U,/U,)+ q and ( Ue/L7,)4 f, respectively, 
and invoke the assumptions of constant cp and p K T. 

2.2. Semi-similar equations for boundary layers 012 a semi-infinite 
plate impulsively set into motion 

Consider the problem of a semi-infinite sharp-leading-edge flat plate immersed in a 
quiescent fluid of infinite extent (with density pe, temperature T,, and pressure p,) 
and set impulsively into motion with constant velocity U ,  parallel to the plate. In  
a Cartesian coordinate system with the origin fixed a t  the leading edge, x-axis on the 
plate and y-axis perpendicular to the plate (figure 1 b), the governing equations and 
boundary conditions are given by (3)-(13) with (9) and (10) replaced, respectively, 
by 

lim u(x, y,t) = U,, 
v+m 

0 < x < 00, 

and limh(z,y,t)=h,,  O < x < c o .  (30) 
Y+W 

The semi-similar transformation and the resulting equations fbr the present 
problem are identical to those [up to (15a)] given in the previous section, with the 
following changes : 

Consequently, A, and A, are given instead by 

Us = U,, K = 1. (31) 

(32) 

(33) 

A, = E( 1 - E )  [l +In (1 -6) U], 

A,  = h(1-5) +tEf+ (1 -5) In (1 -0 (if+ E 3. 
To obtain (32) and (33), the term [i-ln(l-[)] in (20) and (21) is replaced by 
-In (1 -6)  because K = 1 [see (IS)]. 

That the solution at x = 0 is of the Blasius type has been shown in the previous 
section. It is expected that, as x + X I ,  the solution is of the Rayleigh type [Stewartson 
19511. The E = 0 corresponds to x = co. Equations (18) and (24) [with A, and A, 
defined by (32) and (33)] are reduced, respectively, to 

and (35) 

For incompressible flows, p and ,u are constant. The semi-similar variables are 
reduced to 

= l-exp(-Uet/z), 7 = y/{ux[l-exp (-U,t/x)]/U,}+. (36) 

$(x ,Y,~)  = {Uevx[l-exp ( -ue t /~) I>+f( f ,~)~  (37) 

and the non-dimensional stream function f ( E , q )  is given by 

where +(x, y, t )  is the stream function related to u and w by 
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This set of semi-similar transformations [(36)-(38)], was first given by Williams & 
Rhyne (1980). 

The momentum equation, (18), is reduced to 

where A, and A, are given by (32) and (33), respectively. 

i.e. the solution of 
As discussed previously, at x = 0, U is given by the steady-state Blasius solution; 

d F  dii 
dq2 dq 
-+‘f - = 0, 

subject to the boundary conditions given by (25) and (26). Note that x = 0, 5 = 1. 
Equation (40) is obtained from (39) by setting 6 = 1.  

For x 9 U e t ,  U is given by the Rayleigh solution; i.e. the solution of 

subject to the boundary conditions given by (25) and (26). As x / U ,  t - t  O O , ~  = 0 ,  and 
(41) is obtained from (39) by setting 5 = 0.  

3. Energy integral and Reynolds analogy 
It is well known that, for unsteady boundary-layer flows with P, = 1, there exists 

the so-called ‘Busemann energy integral’ for which the total enthalpy H = h+!p2 
is constant throughout the boundary layer. This integral represents the solution of 
an adiabatic flow (i.e. no heat transfer to the wall). For steady non-adiabatic 
boundary layers with P, = 1,  constant pressure and wall temperature, there exists 
the Crocco energy integral. 

For the two unsteady non-adiabatic boundary layers in the present study, the exact 
energy integral exists, provided P,. = 1, and is given by 

h = h,+Au+Bu2, (42) 

where A = - (h,-he-iU2,)/Ue and B = -4. Equation (42) satisfies not only (24) for 
P, = 1 but also the boundary and the initial conditions. 

The ratio of the heat transfer to the wall qw = [k(aT/ay)], , ,  and the skin friction 
7 ,  = & ( a ~ / a y ) ] ~ - ,  can be written as 

In general, this ratio is a function of 5 [see (18) and (24) and numerical solutions 
presented in $51. Consequently, the Reynolds analogy does not hold. However, if 
P, = 1, the energy integral exists. This ratio becomes 

and is independent of 6. Here the Reynolds analogy holds. 
This result is different from that of steady boundary-layer flows. In  a steady 

boundary-layer flow on a flat plate with constant pressure and wall temperature, the 
Reynolds analogy holds even for P, =+ 1 [see Lagerstrom 19641. 



420 J .  C. T. Warq 

4. Numerical method 
For the sake of simplicity, the Chapman-Rubesin law for the viscosity 

pp = const (45) 

is assumed. Note that, with this assumption, the momentum equation is decoupled 
from the energy equation. Furthermore, the momentum equation’as well as its 
‘initial ’ conditions for the compressible boundary-layer flow on a semi-infinite flat 
plate impulsively set into motion is identical with that for an incompressible flow, for 
which the solution using the present method has been given by Wang (1983). 

Using the second-order central difference for both derivatives with respect to 6 and 
r] (18) can be written as 

where i and j are the grid index in the 6 and r ]  direction, respectively ; tr = (i - 1)  A t ;  
7, = ( j - 1 ) A ~ ;  and 

- 
C(i, j) = tP,pAr]2 (55) 

and @ = %/he. 
The difference equations, (46) and (52), subject to the boundary conditions given 

by (25)-(27) and ‘initial’ conditionsgiven by (18a), (24a), (18b), and (24b), are solved 
by the successive-overrelaxation method [Young 19611. The salient nature of the 
method applied to the singular parabolic equations has been given by Wang (1983). 

Note that the solution of U does not depend on 8 explicitly. In this paper, the 
solution of 8 is obtained after the convergent solution for ‘ii is obtained. 

The iteration proceeds in the direction of increasing j. For each j the procedure 
proceeds in the direction of increasing i. In  this iteration procedure, the old values 
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of the dependent variables are replaced immediately by the new values computed 
except forf(i, j), which is recomputed after a relaxation cycle is completed. 

Let n denote the cycle of relaxation; the iteration procedure for solving (46) is 
performed by 

where (57 1 

and K ,  the relaxation factor, is a constant. In Al(i, j), the f(i, j) is computed by 

fCi9.i) = JOq5 -n u 7) d% (58) 

using the trapezoid rule. 
The convergence criterion is applied to the ratio d e h e d  by 

(59) 

The computation is considered to be converged when sup (el,,) is less than a preset 
small value E .  In  this study, the test points are set at i = 2,4,6, ..., j = 2,7,12, ... . 

-n+1- -fl 
%j = I ( % , ,  Ua,,) /zt , l  

Similarly, the iteration procedure for solving (52) is performed by 

e;p = (1 -K)  etj+o.5iqet,+, +e;pl) 
+ U , j )  ( e ? , + l + e ~ ~ ~ ~ ) + ~ o ( i , j )  (e,n,l,,-e~-~~,)+c(i,j), (60) 

where K is a relaxation factor. The convergence criterion for the 8 iteration is defined 
the same as that for the U iteration. 

5. Numerical results and discussion 
The numerical procedures given in the previous section were carried out with 

A6 = 0.05 and A7 = 0.0625. The convergence criterion B is 0.5 x for the u iteration 
and for the 0 iteration. 

It is assumed that h, equals the static enthalpy ahead of the shock. According to 
Felderman (1968), based on the properties of equilibrium air, a, 8, and 8, = h,/he 
as functions of M ,  are given in figure 2. In  this paper, two caaes-M, = 3.15 and 
M, = 5.0 - are presented. The corresponding values of a, p, Ow, and P, used are given 
in table 1. 

Let C, be the skin-friction coefficient defined as the shear stress on the plate divided 
by pe VZ,. Then 

where R, = pe Ue x/,ue. 
Define a dimensionless parameter for the heat-transfer rate to the wall 
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FIQURE 2. Inviscid flow properties for equilibrium air behind 
a normal shock, given by Felderman (1968). 

Ms a P 8, pr 

3.15 1.330 0.70 0.366 0.72 
5.0 1.230 1.170 0.170 1 .o 

TABLE 1. Case study parameters 

The boundary layer behind a moving shock on an infinite plate is discussed in 
Schlichting (1968). The work is essentially due to Mirels (1955). In this case, a 
similarity solution exists and boundary layer is free from the leading-edge effect. 
Section 2 showed that this similarity solution corresponds to the present solution at 
6 = 0. Using the relations given in 92 [immediately after (24b)], Mirels’ solution for 
the skin-friction coefficient Ef and the heat-transfer parameter a are related to the 
present solution by 

and 

where r = x / U e t .  
Comparison of the values of R i  C, and Q with those of R i  C, and @ are shown in 

tables 2 and 3 for M, = 3.15 and M, = 5.0, respectively. It has been recognized that 
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5 

0.0 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1 .oo 

X 
7 = -  

Uet  

1.330 
1.265 
1.203 
1.144 
1.087 
1.033 
0.980 
0.930 
0.880 
0.832 
0.786 
0.740 
0.694 
0.649 
0.604 
0.557 
0.510 
0.459 
0.403 
0.333 
0.0 

0.5524 
0.5454 
0.5382 
0.5306 
0.5230 
0.5149 
0.5066 
0.4978 
0.4889 
0.4791 
0.4692 
0.4585 
0.4475 
0.4355 
0.4235 
0.4099 
0.3964 
0.3804 
0.3653 
0.3446 
0.3321 

R! Cf 

- 
2.439 
1.702 
1.370 
1.169 
1.030 
0.925 
0.842 
0.773 
0.714 
0.664 
0.618 
0.578 
0.540 
0.506 
0.473 
0.443 
0.413 
0.385 
0.354 
0.332 

Rt, Cf 

- 
2.439 
1.702 
1.370 
1.169 
1.030 
0.925 
0.842 
0.773 
0.714 
0.664 
0.618 
0.577 
0.539 
0.503 
0.469 
0.435 
0.401 
0.364 
0.319 
- 

0.4338 
0.4283 
0.4226 
0.4167 
0.4107 
0.4044 
0.3978 
0.3910 
0.3839 
0.3764 
0.3690 
0.3611 
0.3534 
0.3450 
0.3368 
0.3275 
0.3185 
0.3077 
0.2975 
0.2834 
0.2752 

Q 
- 

1.915 
1.336 
1.076 
0.918 
0.809 
0.726 
0.661 
0.607 
0.561 
0.522 
0.487 
0.456 
0.428 
0.403 
0.378 
0.356 
0.334 
0.314 
0.291 
0.275 

TABLE 2. Results for Ms = 3.15, P, = 0.72 

G 
- 

1.915 
1.336 
1.076 
0.918 
0.809 
0.726 
0.661 
0.607 
0.561 
0.521 
0.485 
0.453 
0.423 
0.395 
0.368 
0.342 
0.315 
0.286 
0.251 
- 

( a e / @ ) W  

@ / W W  

0.7853 
0.7853 
0.7853 
0.7853 
0.7853 
0.7853 
0.7853 
0.7853 
0.7854 
0.7857 
0.7865 
0.7878 
0.7896 
0.7922 
0.7953 
0.7992 
0.8035 
0.8089 
0.8146 
0.8224 
0.8286 

5 

0.0 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1 .oo 

1.230 
1.170 
1.113 
1.058 
1.006 
0.955 
0.907 
0.860 
0.814 
0.770 
0.726 
0.684 
0.642 
0.600 
0.558 
0.515 
0.471 
0.425 
0.372 
0.308 
0.0 

- - 0.5223 
0.5156 2.306 2.306 
0.5088 1.609 1.609 
0.5017 1.295 1.295 
0.4944 1.106 1.106 
0.4868 0.974 0.974 
0.4789 0.874 0.874 
0.4707 0.796 0.796 
0.4621 0.731 0.731 
0.4531 0.675 0.675 
0.4438 0.628 0.627 
0.4340 0.585 0.584 
0.4240 0.547 0.546 
0.4133 0.513 0.510 
0.4025 0.481 0.476 
0.3907 0.451 0.444 
0.3790 0.424 0.412 
0.3656 0.397 0.379 
0.3531 0.372 0.344 
0.3373 0.340 0.302 
0.3321 0.332 - 

TABLE 3. Results for M ,  

0.7390 - 
0.7296 3.263 
0.7199 2.277 
0.7099 1.833 
0.6996 1.564 
0.6889 1.378 
0.6778 1.237 
0.6661 1.126 
0.6541 1.034 
0.6414 0.956 
0.6283 0.889 
0.6144 0.829 
0.6003 0.775 
0.5851 0.726 
0.5698 0.681 
0.5530 0.639 
0.5364 0.600 
0.5174 0.561 
0.4997 0.527 
0.4772 0.440 
0.4699 0.470 

= 5.0, P, = 1.0 

B 
- 

3.263 
2.277 
1.833 
1.564 
1.378 
1.237 
1.126 
1.034 
0.956 
0.888 
0.827 
0.772 
0.721 
0.673 
0.628 
0.583 
0.537 
0.487 
0.427 
- 

(ae/aV)W 

( W W W  

1.4150 
1.4150 
1.4150 
1.4150 
1.4151 
1.4151 
1.4152 
1.4153 
1.4155 
1.4155 
1.4157 
1.4156 
1.4157 
1.4156 
1.4157 
1.4155 
1.4154 
1.4152 
1.4151 
1.4150 
1.4150 
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8.0 - 
(4 I 
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e 

FIGURE 3. (a) Velocity profiles and (a) enthalpy profiles for the unsteady compressible boundary 
layer behind a moving normal shock, M, = 3.15, on a sharp-leading-edge flat plate; -, 5 = 0 
(T = 1.33); -x-, 0.3 (0.98); ---, 0.65 (0.649); -. .- 0.95 (0.333). 
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FIQURE 4. Velocity profiles for the boundary layer on a semi-infinite flat plate impulsively set into 
motion: -, E = 0 (T = 00) ;  -x-, 0.4 (1.96); ---, 0.8 (0.625); -. .- , 0.95 (0.333). 

Mirels’ solution should be valid for 7 > 1. This is because the leading-edge effect, in 
the boundary-layer approximation, propagates downstream with speed Ue at most. 
The effect fist takes place on the outer edge of the boundary layer and reaches the 
wall by lateral diffusion. It is expected that, in the region where 7 is slightly less 
than 1, the skin friction and heat transfer should not deviate much from those given 
by Mirels’ solution. Table 3 shows that the departure of both the skin friction and 
heat-transfer values on a sharp-leading-edge flat plate from those given by Mirels’ 
solution is hardly noticeable until 7 < T,, where 7, = 0.77. However, for the case of 
N, = 3.15 (P,  = 0.72) (table 2), 7, is 0.785 for heat transfer and 0.694 for skin friction. 
The reason that 7, for heat transfer is greater than 7, for skin friction is that the 
diffusivity of the energy equation is 1/P, of that for the momentum equation. For 
P, < 1, relative to the front of disturbance U, t ,  the significant effect of the leading 
edge on the solution of the energy equation near the wall takes place earlier than on 
that of the momentum equation. A computation for M, = 5.0, P,= 0.72, also 
confirms this argument. 

For P, = 1, 7, should be of the same value for skin friction and heat transfer; this 
can be seen from (43) and (44). With P, = 1 

using the exact integral relation. The numerically computed values are shown in the 
last column of table 3. The agreement is excellent. This is another verification of the 
accuracy and convergence of the numerical method. 

The transition of the profiles of U and 8, M, = 3.15, from that of Mirels’ solution 
to that of the Blasius solution are shown, respectively, in figures 3 (a)  and (b ) ,  where 
q is Mirels’ variable [see Schlichting 19681 with z = 0 coincident with the leading edge. 
The relation between 7 and 7 is given by 

_ .  
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FIGURE 5. Comparison of heat transfer, Q, for M ,  = 5.0: \\\\, experimental data; -.-, 
calculation of Felderman (1968) ; -, present calculation. 

7 

An interesting result is that, for 7 = 0.649, the leading-edge effect on the skin friction 
and heat transfer is still small (see table 2), whereas the effect on the outer part of 
the boundary-layer profile is significant. The same result shows on the unsteady 
incompressible boundary-layer flows on a semi-infinite plate impulsively set into 
motion. The details of the solution and the comparison of the skin friction have been 
given by Wang (1983) where it was shown that for f less than 0.8 (7 > 0.625) the 
leading-edge effect on the skin friction is hardly noticeable. The transition of the 
profiles of velocity from the Rayleigh solution to that of the Blasius solution is shown 
in figure 4 where y* is Rayleigh’s similarity variable. 

y* = y / ( v t ) i .  (66) 
Note from figure 4 that the leading-edge effect on the outer part of the profile is 
already significantly large at f = 0.8. 

Figure 5 shows the comparison of the heat-transfer coefficient calculated in this 
paper for H, = 5.0 with the calculation and experiment of Felderman (1968). 

6. Conclusion 
Two classic problems in unsteady boundary layers, the problems of Stewartson and 

Lam & Crocco, are formulated with a unified new semi-similar transformation using 
velocity and static enthalpy as dependent variables. By this formulation, the 
resulting governing equations (singular parabolic in nature) for these two physically 
different problems are shown closely to resemble one another in all essential aspects. 
For both cases, the domain of the streamwise independent variable is mapped onto 
[0, 13 for all t .  

It is shown that both the exact integral for the energy equation and the Reynolds 
analogy exist if the Prandtl number equals unity and that both cease to exist 
otherwise. This feature is different from that in the steady boundary layer. 

Uniformly valid solutions for this set of singular parabolic equations are shown to 
be obtainable, accurately, by a standard relaxation method commonly applied to the 
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solution of elliptical partial differential equations. The solutions obtained quantita- 
tively demonstrate the characteristics of the transition from non-similar solutions to 
downstream similar solutions. 
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